翻訳と辞書
Words near each other
・ Agonizer (disambiguation)
・ Agonkanmè
・ Agonli-Houégbo
・ Agonobembix
・ Agonochaetia
・ Agonochaetia conspersa
・ Agonochaetia impunctella
・ Agonochaetia incredibilis
・ Agonochaetia intermedia
・ Agonochaetia quartana
・ Agonochaetia terrestrella
・ Agonochaetia tuvella
・ Agogo, Ghana
・ Agogwe
・ Agogô
Agoh–Giuga conjecture
・ Agoi language
・ Agoitz
・ Agol
・ Agolada
・ Agolagh
・ Agolant
・ Agoli
・ Agoli-agbo
・ Agolli
・ Agoma trimenii
・ Agomani
・ Agomani Higher Secondary School
・ Agomani Railway Station
・ Agomelatine


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Agoh–Giuga conjecture : ウィキペディア英語版
Agoh–Giuga conjecture
In number theory the Agoh–Giuga conjecture on the Bernoulli numbers ''B''''k'' postulates that ''p'' is a prime number if and only if
:pB_ \equiv -1 \pmod p.
It is named after Takashi Agoh and Giuseppe Giuga.
==Equivalent formulation==
The conjecture as stated above is due to Takashi Agoh (1990); an equivalent formulation is due to Giuseppe Giuga, from 1950, to the effect that ''p'' is prime if
:1^+2^+ \cdots +(p-1)^ \equiv -1 \pmod p
which may also be written as
:\sum_^ i^ \equiv -1 \pmod p.
It is trivial to show that ''p'' being prime is sufficient for the second equivalence to hold, since if ''p'' is prime, Fermat's little theorem states that
:a^ \equiv 1 \pmod p
for a = 1,2,\dots,p-1, and the equivalence follows, since p-1 \equiv -1 \pmod p.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Agoh–Giuga conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.